Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3-x^2-603712x-180399027\) | (homogenize, simplify) | 
| \(y^2z=x^3-x^2z-603712xz^2-180399027z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-48900699x-131657592753\) | (homogenize, minimize) | 
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 412984 \) | = | $2^{3} \cdot 11 \cdot 13 \cdot 19^{2}$ |  | 
| Discriminant: | $\Delta$ | = | $-8121403977701872$ | = | $-1 \cdot 2^{4} \cdot 11^{2} \cdot 13 \cdot 19^{9} $ |  | 
| j-invariant: | $j$ | = | \( -\frac{32327511017728}{10789207} \) | = | $-1 \cdot 2^{8} \cdot 11^{-2} \cdot 13^{-1} \cdot 19^{-3} \cdot 29^{3} \cdot 173^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0254739591961774092861991604$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.32220540942630874280927473731$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.8502769662147805$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.9862411724344335$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 0$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |  | 
| Real period: | $\Omega$ | ≈ | $0.085635404237314135038546964456$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2\cdot1\cdot2 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |  | 
| Special value: | $ L(E,1)$ | ≈ | $6.1657491050866177227753814409 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $9$ = $3^2$ (exact) |  | 
BSD formula
$$\begin{aligned} 6.165749105 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{9 \cdot 0.085635 \cdot 1.000000 \cdot 8}{1^2} \\ & \approx 6.165749105\end{aligned}$$
Modular invariants
Modular form 412984.2.a.s
For more coefficients, see the Downloads section to the right.
| Modular degree: | 4769280 |  | 
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III$ | additive | 1 | 3 | 4 | 0 | 
| $11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 | 
| $13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 | 
| $19$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 494 = 2 \cdot 13 \cdot 19 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 1 \\ 493 & 0 \end{array}\right),\left(\begin{array}{rr} 287 & 2 \\ 287 & 3 \end{array}\right),\left(\begin{array}{rr} 457 & 2 \\ 457 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 493 & 2 \\ 492 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[494])$ is a degree-$9680186880$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/494\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 4693 = 13 \cdot 19^{2} \) | 
| $11$ | split multiplicative | $12$ | \( 37544 = 2^{3} \cdot 13 \cdot 19^{2} \) | 
| $13$ | split multiplicative | $14$ | \( 31768 = 2^{3} \cdot 11 \cdot 19^{2} \) | 
| $19$ | additive | $200$ | \( 1144 = 2^{3} \cdot 11 \cdot 13 \) | 
Isogenies
This curve has no rational isogenies. Its isogeny class 412984.s consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 21736.d1, its twist by $-19$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
