Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-331681x-63331295\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-331681xz^2-63331295z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-26866188x-46249112592\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-19799/49, 732096/343)$ | $6.8806097347795671403234507778$ | $\infty$ |
$(655, 0)$ | $0$ | $2$ |
Integral points
\( \left(655, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 41280 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 43$ |
|
Discriminant: | $\Delta$ | = | $596558662242140160$ | = | $2^{21} \cdot 3^{2} \cdot 5 \cdot 43^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{15393836938735081}{2275690697640} \) | = | $2^{-3} \cdot 3^{-2} \cdot 5^{-1} \cdot 17^{3} \cdot 43^{-6} \cdot 14633^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1354948814925847937476459103$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0957741106526668296217977281$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9789160041460154$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.680915359492695$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.8806097347795671403234507778$ |
|
Real period: | $\Omega$ | ≈ | $0.20090604640507097506274623253$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.5294243946832272401891786672 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.529424395 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.200906 \cdot 6.880610 \cdot 16}{2^2} \\ & \approx 5.529424395\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 552960 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{11}^{*}$ | additive | 1 | 6 | 21 | 3 |
$3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$43$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5160 = 2^{3} \cdot 3 \cdot 5 \cdot 43 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 5150 & 5157 \\ 2607 & 8 \end{array}\right),\left(\begin{array}{rr} 4561 & 12 \\ 1566 & 73 \end{array}\right),\left(\begin{array}{rr} 5149 & 12 \\ 5148 & 13 \end{array}\right),\left(\begin{array}{rr} 10 & 3 \\ 4101 & 5152 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 5110 & 5151 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1721 & 12 \\ 4306 & 73 \end{array}\right),\left(\begin{array}{rr} 1515 & 2368 \\ 1478 & 2357 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[5160])$ is a degree-$1230331576320$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 5 \) |
$3$ | nonsplit multiplicative | $4$ | \( 320 = 2^{6} \cdot 5 \) |
$5$ | nonsplit multiplicative | $6$ | \( 8256 = 2^{6} \cdot 3 \cdot 43 \) |
$43$ | nonsplit multiplicative | $44$ | \( 960 = 2^{6} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 41280.s
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 1290.h1, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{10}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-6}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.4.2662560.1 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-6}, \sqrt{10})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.18895680000.28 | \(\Z/6\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.8.11342761205760000.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.453710448230400.14 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.0.82819051977601604268303237929994750944870400000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | nonsplit | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord | nonsplit | ord |
$\lambda$-invariant(s) | - | 1 | 3 | 1 | 1 | 1 | 1,1 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 1 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.