Properties

Label 412224bs
Number of curves $2$
Conductor $412224$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("bs1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 412224bs

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
412224.bs1 412224bs1 \([0, 1, 0, -31672545, -40482638721]\) \(13403946614821979039929/5057590268826067968\) \(1325816943431140761403392\) \([2]\) \(121405440\) \(3.3282\) \(\Gamma_0(N)\)-optimal
412224.bs2 412224bs2 \([0, 1, 0, 99082015, -288785548161]\) \(410363075617640914325831/374944243169850027552\) \(-98289383681517165622591488\) \([2]\) \(242810880\) \(3.6748\)  

Rank

sage: E.rank()
 

The elliptic curves in class 412224bs have rank \(1\).

Complex multiplication

The elliptic curves in class 412224bs do not have complex multiplication.

Modular form 412224.2.a.bs

sage: E.q_eigenform(10)
 
\(q + q^{3} - 4q^{5} - 4q^{7} + q^{9} - 4q^{15} - 6q^{17} - q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.