Properties

Label 412200.k
Number of curves $2$
Conductor $412200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 412200.k have rank \(1\).

Complex multiplication

The elliptic curves in class 412200.k do not have complex multiplication.

Modular form 412200.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{7} + 4 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 412200.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
412200.k1 412200k1 \([0, 0, 0, -16050, 768625]\) \(2508888064/51525\) \(9390431250000\) \([2]\) \(761856\) \(1.2797\) \(\Gamma_0(N)\)-optimal
412200.k2 412200k2 \([0, 0, 0, 825, 2304250]\) \(21296/786615\) \(-2293769340000000\) \([2]\) \(1523712\) \(1.6263\)