Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2=x^3+184425x+16290250\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z=x^3+184425xz^2+16290250z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3+184425x+16290250\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(1730, 74250)$ | $2.8480142603914324816970260684$ | $\infty$ | 
| $(-85, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-85, 0\right) \), \((1730,\pm 74250)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 412200 \) | = | $2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 229$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $-516098101500000000$ | = | $-1 \cdot 2^{8} \cdot 3^{9} \cdot 5^{9} \cdot 229^{2} $ | 
     | 
        
| j-invariant: | $j$ | = | \( \frac{237900617264}{176988375} \) | = | $2^{4} \cdot 3^{-3} \cdot 5^{-3} \cdot 229^{-2} \cdot 2459^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0869839294714728087661803956$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.27086070854707090282335669622$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $0.8538134923144165$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.711626407742146$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 1$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.8480142603914324816970260684$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.18734025686621436477554563470$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2^{2}\cdot2^{2}\cdot2 $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | 
     | 
        
| Special value: | $ L'(E,1)$ | ≈ | $8.5367635696059597562319405356 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | 
     | 
        
BSD formula
$$\begin{aligned} 8.536763570 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.187340 \cdot 2.848014 \cdot 64}{2^2} \\ & \approx 8.536763570\end{aligned}$$
Modular invariants
Modular form 412200.2.a.g
For more coefficients, see the Downloads section to the right.
| Modular degree: | 4866048 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{1}^{*}$ | additive | 1 | 3 | 8 | 0 | 
| $3$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 | 
| $5$ | $4$ | $I_{3}^{*}$ | additive | 1 | 2 | 9 | 3 | 
| $229$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 2.3.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 13740 = 2^{2} \cdot 3 \cdot 5 \cdot 229 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 13737 & 4 \\ 13736 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 12601 & 4 \\ 11462 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4582 & 1 \\ 4579 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 10994 & 1 \\ 8243 & 0 \end{array}\right),\left(\begin{array}{rr} 3437 & 10306 \\ 10304 & 3435 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[13740])$ is a degree-$504667658649600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/13740\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 225 = 3^{2} \cdot 5^{2} \) | 
| $3$ | additive | $2$ | \( 45800 = 2^{3} \cdot 5^{2} \cdot 229 \) | 
| $5$ | additive | $18$ | \( 16488 = 2^{3} \cdot 3^{2} \cdot 229 \) | 
| $229$ | split multiplicative | $230$ | \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 412200.g
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 27480.e2, its twist by $-15$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.