Properties

Label 412200.g
Number of curves $2$
Conductor $412200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 412200.g have rank \(1\).

Complex multiplication

The elliptic curves in class 412200.g do not have complex multiplication.

Modular form 412200.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{7} - 4 q^{11} + 4 q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 412200.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
412200.g1 412200g2 \([0, 0, 0, -846075, 138919750]\) \(5742523604164/2608453125\) \(30424997250000000000\) \([2]\) \(9732096\) \(2.4336\) \(\Gamma_0(N)\)-optimal*
412200.g2 412200g1 \([0, 0, 0, 184425, 16290250]\) \(237900617264/176988375\) \(-516098101500000000\) \([2]\) \(4866048\) \(2.0870\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 412200.g1.