Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-9675x+357750\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-9675xz^2+357750z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-9675x+357750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(31, 296)$ | $3.1679466611923582915779813456$ | $\infty$ |
Integral points
\((31,\pm 296)\)
Invariants
| Conductor: | $N$ | = | \( 412200 \) | = | $2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 229$ |
|
| Discriminant: | $\Delta$ | = | $2671056000000$ | = | $2^{10} \cdot 3^{6} \cdot 5^{6} \cdot 229 $ |
|
| j-invariant: | $j$ | = | \( \frac{8586756}{229} \) | = | $2^{2} \cdot 3^{3} \cdot 43^{3} \cdot 229^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1653087199851608642633511769$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.76633903103256525991567787606$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.7544039805613597$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.0276669070688285$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.1679466611923582915779813456$ |
|
| Real period: | $\Omega$ | ≈ | $0.80666259038182036088724360533$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 2\cdot1\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $5.1109281198177335302805486170 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.110928120 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.806663 \cdot 3.167947 \cdot 2}{1^2} \\ & \approx 5.110928120\end{aligned}$$
Modular invariants
Modular form 412200.2.a.c
For more coefficients, see the Downloads section to the right.
| Modular degree: | 815360 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III^{*}$ | additive | 1 | 3 | 10 | 0 |
| $3$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $229$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 458 = 2 \cdot 229 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 1 \\ 457 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 235 & 2 \\ 235 & 3 \end{array}\right),\left(\begin{array}{rr} 457 & 2 \\ 456 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[458])$ is a degree-$8213991840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/458\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 51525 = 3^{2} \cdot 5^{2} \cdot 229 \) |
| $3$ | additive | $6$ | \( 45800 = 2^{3} \cdot 5^{2} \cdot 229 \) |
| $5$ | additive | $14$ | \( 16488 = 2^{3} \cdot 3^{2} \cdot 229 \) |
| $229$ | split multiplicative | $230$ | \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 412200.c consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 1832.e1, its twist by $-15$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.