Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-31270575x+39883815250\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-31270575xz^2+39883815250z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-31270575x+39883815250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(1355, 0)$ | $0$ | $2$ |
| $(4790, 0)$ | $0$ | $2$ |
Integral points
\( \left(-6145, 0\right) \), \( \left(1355, 0\right) \), \( \left(4790, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 412200 \) | = | $2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 229$ |
|
| Discriminant: | $\Delta$ | = | $1269794866478062500000000$ | = | $2^{8} \cdot 3^{18} \cdot 5^{12} \cdot 229^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{1159695024024409936}{435457773140625} \) | = | $2^{4} \cdot 3^{-12} \cdot 5^{-6} \cdot 7^{6} \cdot 67^{3} \cdot 127^{3} \cdot 229^{-2}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.3247503138493373687838089718$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.5086270929249354628409852724$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0027020154984128$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.902689560898895$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.078609062429525789724000717294$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2^{2}\cdot2^{2}\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L(E,1)$ | ≈ | $5.6598524949258568601280516452 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $9$ = $3^2$ (exact) |
|
BSD formula
$$\begin{aligned} 5.659852495 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{9 \cdot 0.078609 \cdot 1.000000 \cdot 128}{4^2} \\ & \approx 5.659852495\end{aligned}$$
Modular invariants
Modular form 412200.2.a.bh
For more coefficients, see the Downloads section to the right.
| Modular degree: | 62816256 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{1}^{*}$ | additive | -1 | 3 | 8 | 0 |
| $3$ | $4$ | $I_{12}^{*}$ | additive | -1 | 2 | 18 | 12 |
| $5$ | $4$ | $I_{6}^{*}$ | additive | 1 | 2 | 12 | 6 |
| $229$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 13740 = 2^{2} \cdot 3 \cdot 5 \cdot 229 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 13737 & 4 \\ 13736 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 12601 & 9162 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1829 & 4578 \\ 6414 & 9161 \end{array}\right),\left(\begin{array}{rr} 4579 & 0 \\ 0 & 13739 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 2293 & 9162 \\ 4572 & 13735 \end{array}\right)$.
The torsion field $K:=\Q(E[13740])$ is a degree-$126166914662400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/13740\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 225 = 3^{2} \cdot 5^{2} \) |
| $3$ | additive | $2$ | \( 45800 = 2^{3} \cdot 5^{2} \cdot 229 \) |
| $5$ | additive | $18$ | \( 16488 = 2^{3} \cdot 3^{2} \cdot 229 \) |
| $229$ | split multiplicative | $230$ | \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 412200.bh
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 27480.c2, its twist by $-15$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.