Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-84588x-9518512\)
|
(homogenize, simplify) |
\(y^2z=x^3-84588xz^2-9518512z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-84588x-9518512\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(463731541/83521, 9972204983631/24137569)$ | $19.435331006207570282229036094$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 411840 \) | = | $2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-404855193600000$ | = | $-1 \cdot 2^{25} \cdot 3^{3} \cdot 5^{5} \cdot 11 \cdot 13 $ |
|
j-invariant: | $j$ | = | \( -\frac{9456845543523}{57200000} \) | = | $-1 \cdot 2^{-7} \cdot 3^{3} \cdot 5^{-5} \cdot 7^{3} \cdot 11^{-1} \cdot 13^{-1} \cdot 19^{3} \cdot 53^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6423167866563512343917935406$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.32794294364940584741713404918$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9038172740105802$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.5318120046914796$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $19.435331006207570282229036094$ |
|
Real period: | $\Omega$ | ≈ | $0.13992179223225488982299554419$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot2\cdot1\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $10.877705388062708077502483398 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.877705388 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.139922 \cdot 19.435331 \cdot 4}{1^2} \\ & \approx 10.877705388\end{aligned}$$
Modular invariants
Modular form 411840.2.a.gt
For more coefficients, see the Downloads section to the right.
Modular degree: | 2150400 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{15}^{*}$ | additive | -1 | 6 | 25 | 7 |
$3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
$5$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
$11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 17160 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 1 \\ 17159 & 0 \end{array}\right),\left(\begin{array}{rr} 10297 & 2 \\ 10297 & 3 \end{array}\right),\left(\begin{array}{rr} 2641 & 2 \\ 2641 & 3 \end{array}\right),\left(\begin{array}{rr} 12871 & 2 \\ 12871 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 8581 & 2 \\ 8581 & 3 \end{array}\right),\left(\begin{array}{rr} 11441 & 2 \\ 11441 & 3 \end{array}\right),\left(\begin{array}{rr} 7801 & 2 \\ 7801 & 3 \end{array}\right),\left(\begin{array}{rr} 17159 & 2 \\ 17158 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[17160])$ is a degree-$6121410527232000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/17160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 2145 = 3 \cdot 5 \cdot 11 \cdot 13 \) |
$3$ | additive | $6$ | \( 45760 = 2^{6} \cdot 5 \cdot 11 \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 82368 = 2^{6} \cdot 3^{2} \cdot 11 \cdot 13 \) |
$11$ | split multiplicative | $12$ | \( 37440 = 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 31680 = 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 411840gt consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 12870a1, its twist by $24$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.