Properties

Label 411840.jv
Number of curves $2$
Conductor $411840$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("jv1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 411840.jv have rank \(0\).

Complex multiplication

The elliptic curves in class 411840.jv do not have complex multiplication.

Modular form 411840.2.a.jv

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - q^{11} - q^{13} + 4 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 411840.jv

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
411840.jv1 411840jv2 \([0, 0, 0, -6720492, 6705062224]\) \(175654575624148921/21954418200\) \(4195554654368563200\) \([2]\) \(11796480\) \(2.5960\) \(\Gamma_0(N)\)-optimal*
411840.jv2 411840jv1 \([0, 0, 0, -384492, 123225424]\) \(-32894113444921/15289560000\) \(-2921880417730560000\) \([2]\) \(5898240\) \(2.2494\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 411840.jv1.