Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-25443976908x-1517115793325168\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-25443976908xz^2-1517115793325168z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-25443976908x-1517115793325168\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-79012, 0)$ | $0$ | $2$ |
Integral points
\( \left(-79012, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 411840 \) | = | $2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $59920361563730954938542666547200$ | = | $2^{33} \cdot 3^{36} \cdot 5^{2} \cdot 11 \cdot 13^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{9532597152396244075685450929}{313550122650789880627200} \) | = | $2^{-15} \cdot 3^{-30} \cdot 5^{-2} \cdot 7^{3} \cdot 11^{-1} \cdot 13^{-2} \cdot 17^{3} \cdot 53^{3} \cdot 227^{3} \cdot 1481^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.8708426889263085865319406587$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $3.2818157737523357767084698580$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.038738519453898$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.458100071533572$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.011977848945743294126534630560$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $4.6953167867313712976015751796 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $49$ = $7^2$ (exact) |
|
BSD formula
$$\begin{aligned} 4.695316787 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{49 \cdot 0.011978 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 4.695316787\end{aligned}$$
Modular invariants
Modular form 411840.2.a.gf
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1238630400 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{23}^{*}$ | additive | -1 | 6 | 33 | 15 |
| $3$ | $4$ | $I_{30}^{*}$ | additive | -1 | 2 | 36 | 30 |
| $5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $13$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3432 = 2^{3} \cdot 3 \cdot 11 \cdot 13 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 2506 & 3 \\ 2157 & 3424 \end{array}\right),\left(\begin{array}{rr} 2430 & 1847 \\ 715 & 142 \end{array}\right),\left(\begin{array}{rr} 2641 & 12 \\ 2118 & 73 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 3382 & 3423 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 3422 & 3429 \\ 1743 & 8 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 3421 & 12 \\ 3420 & 13 \end{array}\right),\left(\begin{array}{rr} 1135 & 3430 \\ 2856 & 3431 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[3432])$ is a degree-$265686220800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3432\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 99 = 3^{2} \cdot 11 \) |
| $3$ | additive | $2$ | \( 45760 = 2^{6} \cdot 5 \cdot 11 \cdot 13 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 82368 = 2^{6} \cdot 3^{2} \cdot 11 \cdot 13 \) |
| $11$ | split multiplicative | $12$ | \( 37440 = 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 31680 = 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 411840.gf
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 4290.w3, its twist by $24$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.