Properties

Label 411840.fy
Number of curves $4$
Conductor $411840$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fy1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 411840.fy have rank \(1\).

Complex multiplication

The elliptic curves in class 411840.fy do not have complex multiplication.

Modular form 411840.2.a.fy

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + 4 q^{7} - q^{11} - q^{13} + 6 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 411840.fy

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
411840.fy1 411840fy4 \([0, 0, 0, -13481868, -19053335792]\) \(1418098748958579169/8307406250\) \(1587570057216000000\) \([2]\) \(21233664\) \(2.6820\)  
411840.fy2 411840fy3 \([0, 0, 0, -827148, -309164528]\) \(-327495950129089/26547449500\) \(-5073296604659712000\) \([2]\) \(10616832\) \(2.3355\)  
411840.fy3 411840fy2 \([0, 0, 0, -239628, -958448]\) \(7962857630209/4606058600\) \(880231506090393600\) \([2]\) \(7077888\) \(2.1327\) \(\Gamma_0(N)\)-optimal*
411840.fy4 411840fy1 \([0, 0, 0, 59892, -119792]\) \(124326214271/71980480\) \(-13755683941908480\) \([2]\) \(3538944\) \(1.7861\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 0 curves highlighted, and conditionally curve 411840.fy1.