Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+123252x-148055312\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+123252xz^2-148055312z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+123252x-148055312\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(452, 0)$ | $0$ | $2$ |
Integral points
\( \left(452, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 411840 \) | = | $2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $-9589431168002949120$ | = | $-1 \cdot 2^{21} \cdot 3^{7} \cdot 5 \cdot 11^{4} \cdot 13^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{1083523132511}{50179392120} \) | = | $2^{-3} \cdot 3^{-1} \cdot 5^{-1} \cdot 11^{-4} \cdot 13^{-4} \cdot 10271^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3220324155667885533533915618$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.73300550039281574352992076115$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9539844156603843$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.956357884949479$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.11024386315261130179194092400$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2\cdot1\cdot2^{2}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.7639018104417808286710547840 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.763901810 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.110244 \cdot 1.000000 \cdot 64}{2^2} \\ & \approx 1.763901810\end{aligned}$$
Modular invariants
Modular form 411840.2.a.ba
For more coefficients, see the Downloads section to the right.
| Modular degree: | 7077888 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{11}^{*}$ | additive | 1 | 6 | 21 | 3 |
| $3$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $11$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $13$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 17160 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 13736 & 3 \\ 5 & 2 \end{array}\right),\left(\begin{array}{rr} 11432 & 17157 \\ 11435 & 17158 \end{array}\right),\left(\begin{array}{rr} 7801 & 8 \\ 14044 & 33 \end{array}\right),\left(\begin{array}{rr} 6443 & 6436 \\ 6482 & 15021 \end{array}\right),\left(\begin{array}{rr} 6432 & 15007 \\ 10733 & 10746 \end{array}\right),\left(\begin{array}{rr} 2641 & 8 \\ 10564 & 33 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 17154 & 17155 \end{array}\right),\left(\begin{array}{rr} 17153 & 8 \\ 17152 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[17160])$ is a degree-$255058771968000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/17160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 45 = 3^{2} \cdot 5 \) |
| $3$ | additive | $8$ | \( 45760 = 2^{6} \cdot 5 \cdot 11 \cdot 13 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 82368 = 2^{6} \cdot 3^{2} \cdot 11 \cdot 13 \) |
| $11$ | split multiplicative | $12$ | \( 37440 = 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) |
| $13$ | split multiplicative | $14$ | \( 31680 = 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 411840.ba
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 4290.q4, its twist by $-24$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.