Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-366x-1696\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-366xz^2-1696z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-473715x-77695794\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-11, 37)$ | $1.9052505185818567548341621364$ | $\infty$ |
| $(21, -11)$ | $0$ | $2$ |
Integral points
\( \left(-11, 37\right) \), \( \left(-11, -27\right) \), \( \left(21, -11\right) \)
Invariants
| Conductor: | $N$ | = | \( 4114 \) | = | $2 \cdot 11^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $1927458368$ | = | $2^{6} \cdot 11^{6} \cdot 17 $ |
|
| j-invariant: | $j$ | = | \( \frac{3048625}{1088} \) | = | $2^{-6} \cdot 5^{3} \cdot 17^{-1} \cdot 29^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.48255529985072328537898361105$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.71639233654846198665198817793$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9000957170016773$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.5228359370916738$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.9052505185818567548341621364$ |
|
| Real period: | $\Omega$ | ≈ | $1.1241398562136879550660947174$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.1417680440096628637962757925 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.141768044 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.124140 \cdot 1.905251 \cdot 4}{2^2} \\ & \approx 2.141768044\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2160 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $11$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $17$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4488 = 2^{3} \cdot 3 \cdot 11 \cdot 17 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 11 & 2 \\ 4438 & 4479 \end{array}\right),\left(\begin{array}{rr} 2883 & 88 \\ 4070 & 485 \end{array}\right),\left(\begin{array}{rr} 2729 & 3674 \\ 2574 & 4093 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 4079 & 0 \\ 0 & 4487 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 4477 & 12 \\ 4476 & 13 \end{array}\right),\left(\begin{array}{rr} 2410 & 3267 \\ 429 & 3664 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2245 & 4092 \\ 2046 & 2113 \end{array}\right)$.
The torsion field $K:=\Q(E[4488])$ is a degree-$794139033600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4488\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 2057 = 11^{2} \cdot 17 \) |
| $3$ | good | $2$ | \( 2057 = 11^{2} \cdot 17 \) |
| $11$ | additive | $62$ | \( 34 = 2 \cdot 17 \) |
| $17$ | split multiplicative | $18$ | \( 242 = 2 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 4114b
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 34a1, its twist by $-11$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{17}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-11}) \) | \(\Z/6\Z\) | 2.0.11.1-1156.1-a1 |
| $4$ | 4.4.131648.2 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-11}, \sqrt{17})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.3001494177.2 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.361879703274496.10 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.5008715616256.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.17331195904.2 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.0.26101656521178507374473951064064.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | ord | ss | ord | add | ord | split | ord | ss | ss | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 2 | 5 | 5,1 | 1 | - | 1 | 2 | 3 | 1,1 | 1,1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | 0 | 0 | 0,0 | 0 | - | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.