Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2+194920x-22532453\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z+194920xz^2-22532453z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+3118725x-1438958250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(253, 6425)$ | $0.47184078897421071890085336620$ | $\infty$ |
| $(109, -55)$ | $0$ | $2$ |
Integral points
\( \left(109, -55\right) \), \( \left(253, 6425\right) \), \( \left(253, -6679\right) \), \( \left(365, 9673\right) \), \( \left(365, -10039\right) \), \( \left(1009, 34145\right) \), \( \left(1009, -35155\right) \), \( \left(1709, 71945\right) \), \( \left(1709, -73655\right) \), \( \left(20845, 2999753\right) \), \( \left(20845, -3020599\right) \)
Invariants
| Conductor: | $N$ | = | \( 40950 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $-692354138112000000$ | = | $-1 \cdot 2^{20} \cdot 3^{6} \cdot 5^{6} \cdot 7^{3} \cdot 13^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{71903073502287}{60782804992} \) | = | $2^{-20} \cdot 3^{3} \cdot 7^{-3} \cdot 13^{-2} \cdot 83^{3} \cdot 167^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1108846871240466975432120769$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.75685958657294166454520979183$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0313104102158892$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.534289619533095$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.47184078897421071890085336620$ |
|
| Real period: | $\Omega$ | ≈ | $0.15810127968703576951128867992$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 480 $ = $ ( 2^{2} \cdot 5 )\cdot2\cdot2\cdot3\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $8.9518359054435974656133793530 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.951835905 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.158101 \cdot 0.471841 \cdot 480}{2^2} \\ & \approx 8.951835905\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 737280 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $20$ | $I_{20}$ | split multiplicative | -1 | 1 | 20 | 20 |
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.9 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 559 & 0 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 211 & 150 \\ 810 & 331 \end{array}\right),\left(\begin{array}{rr} 833 & 8 \\ 832 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 503 & 0 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 136 & 675 \\ 645 & 226 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 834 & 835 \end{array}\right),\left(\begin{array}{rr} 361 & 360 \\ 510 & 31 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$1486356480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \) |
| $3$ | additive | $6$ | \( 650 = 2 \cdot 5^{2} \cdot 13 \) |
| $5$ | additive | $14$ | \( 819 = 3^{2} \cdot 7 \cdot 13 \) |
| $7$ | split multiplicative | $8$ | \( 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
| $13$ | split multiplicative | $14$ | \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 40950.eg
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 182.c4, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-7}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{105}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-15}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-7}, \sqrt{-15})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.43547843233440000.106 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.24395696640000.85 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.290198039040000.45 | \(\Z/8\Z\) | not in database |
| $8$ | 8.2.624629070000.1 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | add | split | ord | split | ord | ss | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 5 | - | - | 2 | 1 | 2 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | - | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.