Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-13305080x-18670244453\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-13305080xz^2-18670244453z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-212881275x-1195108526250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-2095, 3413)$ | $0.47184078897421071890085336620$ | $\infty$ |
$(-8549/4, 8545/8)$ | $0$ | $2$ |
Integral points
\( \left(-2095, 3413\right) \), \( \left(-2095, -1319\right) \), \( \left(-2081, 2615\right) \), \( \left(-2081, -535\right) \), \( \left(5003, 197425\right) \), \( \left(5003, -202429\right) \), \( \left(7369, 528665\right) \), \( \left(7369, -536035\right) \), \( \left(13865, 1562173\right) \), \( \left(13865, -1576039\right) \), \( \left(83419, 24028115\right) \), \( \left(83419, -24111535\right) \)
Invariants
Conductor: | $N$ | = | \( 40950 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $101985509796943500000$ | = | $2^{5} \cdot 3^{6} \cdot 5^{6} \cdot 7^{3} \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{22868021811807457713}{8953460393696} \) | = | $2^{-5} \cdot 3^{3} \cdot 7^{-3} \cdot 13^{-8} \cdot 349^{3} \cdot 2711^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8040318676839920069604441983$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4500067671328869739624419132$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.087583326356874$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.727303112518573$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.47184078897421071890085336620$ |
|
Real period: | $\Omega$ | ≈ | $0.079050639843517884755644339960$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 960 $ = $ 5\cdot2\cdot2^{2}\cdot3\cdot2^{3} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $8.9518359054435974656133793530 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.951835905 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.079051 \cdot 0.471841 \cdot 960}{2^2} \\ & \approx 8.951835905\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 2949120 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
$3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$13$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.9 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 559 & 0 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 136 & 225 \\ 105 & 376 \end{array}\right),\left(\begin{array}{rr} 833 & 8 \\ 832 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 503 & 0 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 796 & 225 \\ 615 & 286 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 834 & 835 \end{array}\right),\left(\begin{array}{rr} 736 & 435 \\ 585 & 166 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$1486356480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \) |
$3$ | additive | $6$ | \( 650 = 2 \cdot 5^{2} \cdot 13 \) |
$5$ | additive | $14$ | \( 819 = 3^{2} \cdot 7 \cdot 13 \) |
$7$ | split multiplicative | $8$ | \( 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 40950.eg
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 182.c1, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-105}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-30}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{14}, \sqrt{-30})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.24395696640000.84 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.10404495360000.86 | \(\Z/8\Z\) | not in database |
$8$ | 8.2.624629070000.1 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | add | add | split | ord | split | ord | ss | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 5 | - | - | 2 | 1 | 2 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 1 | - | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.