Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-26775x-1584464\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-26775xz^2-1584464z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-428403x-101834098\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-112, 56)$ | $0$ | $2$ |
| $(188, -94)$ | $0$ | $2$ |
Integral points
\( \left(-112, 56\right) \), \( \left(188, -94\right) \)
Invariants
| Conductor: | $N$ | = | \( 4095 \) | = | $3^{2} \cdot 5 \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $134776426955625$ | = | $3^{12} \cdot 5^{4} \cdot 7^{4} \cdot 13^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{2912015927948401}{184878500625} \) | = | $3^{-6} \cdot 5^{-4} \cdot 7^{-4} \cdot 13^{-2} \cdot 61^{3} \cdot 2341^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4620147159052550517942296477$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.91270857157120020609660702924$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9488541049706727$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.073541824817358$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.37470681490053198133163720794$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.4988272596021279253265488318 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.498827260 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.374707 \cdot 1.000000 \cdot 64}{4^2} \\ & \approx 1.498827260\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 12288 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $4$ | $I_{6}^{*}$ | additive | -1 | 2 | 12 | 6 |
| $5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $7$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 4.12.0.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 10913 & 8 \\ 10912 & 9 \end{array}\right),\left(\begin{array}{rr} 7801 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7273 & 10918 \\ 18 & 5 \end{array}\right),\left(\begin{array}{rr} 8737 & 8 \\ 2188 & 33 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 10916 & 10917 \end{array}\right),\left(\begin{array}{rr} 7567 & 6 \\ 7554 & 10915 \end{array}\right),\left(\begin{array}{rr} 5465 & 2736 \\ 2724 & 5453 \end{array}\right),\left(\begin{array}{rr} 5 & 8196 \\ 10894 & 2699 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$9738607656960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 9 = 3^{2} \) |
| $3$ | additive | $6$ | \( 455 = 5 \cdot 7 \cdot 13 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 819 = 3^{2} \cdot 7 \cdot 13 \) |
| $7$ | split multiplicative | $8$ | \( 585 = 3^{2} \cdot 5 \cdot 13 \) |
| $13$ | split multiplicative | $14$ | \( 315 = 3^{2} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 4095.k
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 1365.a4, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{3}, \sqrt{-13})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{3}, \sqrt{13})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.592240896.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.31116960000.3 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.3471607400625.6 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.2.93733399816875.5 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 13 |
|---|---|---|---|---|---|
| Reduction type | ord | add | nonsplit | split | split |
| $\lambda$-invariant(s) | 4 | - | 0 | 3 | 1 |
| $\mu$-invariant(s) | 0 | - | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.