Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-10651x+206182\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-10651xz^2+206182z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-13803075x+9661048254\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-25, 688)$ | $0.55774290006920493923191752567$ | $\infty$ |
| $(407/4, 2969/8)$ | $3.0582382647738756694656160078$ | $\infty$ |
Integral points
\( \left(-73, 808\right) \), \( \left(-73, -736\right) \), \( \left(-25, 688\right) \), \( \left(-25, -664\right) \), \( \left(92, 38\right) \), \( \left(92, -131\right) \), \( \left(2510, 124396\right) \), \( \left(2510, -126907\right) \), \( \left(7472, 642098\right) \), \( \left(7472, -649571\right) \)
Invariants
| Conductor: | $N$ | = | \( 40898 \) | = | $2 \cdot 11^{2} \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $58796866393408$ | = | $2^{6} \cdot 11^{4} \cdot 13^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{1890625}{832} \) | = | $2^{-6} \cdot 5^{6} \cdot 11^{2} \cdot 13^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3379210282627132508816912576$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.74385207473417863183236698917$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9715397033014552$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.7135608477414586$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.6790805452843426891055824905$ |
|
| Real period: | $\Omega$ | ≈ | $0.56273771498883903113380188677$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot1\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $7.5590555946841989156357870762 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.559055595 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.562738 \cdot 1.679081 \cdot 8}{1^2} \\ & \approx 7.559055595\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 112896 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $11$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
| $13$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 78 = 2 \cdot 3 \cdot 13 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 11 & 72 \\ 33 & 59 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 73 & 6 \\ 72 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 66 & 19 \\ 13 & 27 \end{array}\right)$.
The torsion field $K:=\Q(E[78])$ is a degree-$471744$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/78\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 20449 = 11^{2} \cdot 13^{2} \) |
| $3$ | good | $2$ | \( 20449 = 11^{2} \cdot 13^{2} \) |
| $11$ | additive | $52$ | \( 338 = 2 \cdot 13^{2} \) |
| $13$ | additive | $98$ | \( 242 = 2 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 40898h
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 3146o1, its twist by $13$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{13}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.3.1573.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.6.32166277.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.146774721951.2 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $18$ | 18.6.2838332552957465840078028058939392.2 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.3161941269322489411200205574448351.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | ord | ss | ord | add | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 2 | 2 | 2,2 | 2 | - | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | 0 | 0 | 0,0 | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.