Properties

Label 40898.bk
Number of curves $2$
Conductor $40898$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 40898.bk have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(11\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 40898.bk do not have complex multiplication.

Modular form 40898.2.a.bk

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + 3 q^{7} + q^{8} - 2 q^{9} - q^{10} - q^{12} + 3 q^{14} + q^{15} + q^{16} - 3 q^{17} - 2 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 40898.bk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
40898.bk1 40898bj2 \([1, 1, 1, -571140996, 5254706206927]\) \(-2409558590804994721/674373039626\) \(-5766554810979530850470474\) \([]\) \(12096000\) \(3.7327\)  
40898.bk2 40898bj1 \([1, 1, 1, 5725294, -806215233]\) \(2427173723519/1437646496\) \(-12293295892425292563104\) \([]\) \(2419200\) \(2.9280\) \(\Gamma_0(N)\)-optimal