Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-3135656x+807066000\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-3135656xz^2+807066000z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-253988163x+587589149538\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(256, 4588)$ | $6.2342971487210168539015376394$ | $\infty$ |
$(1625, 0)$ | $0$ | $2$ |
Integral points
\((256,\pm 4588)\), \( \left(1625, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 4080 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $1692516612987834624000$ | = | $2^{11} \cdot 3^{28} \cdot 5^{3} \cdot 17^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{1664865424893526702418}{826424127435466125} \) | = | $2 \cdot 3^{-28} \cdot 5^{-3} \cdot 11^{3} \cdot 13^{3} \cdot 17^{-2} \cdot 157^{3} \cdot 419^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.7663630070522230843196225832$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.1309780915389398840204931385$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0609933840271915$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.794521771191917$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.2342971487210168539015376394$ |
|
Real period: | $\Omega$ | ≈ | $0.13249507993248039744495368272$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.3040547961705030401893240056 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.304054796 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.132495 \cdot 6.234297 \cdot 16}{2^2} \\ & \approx 3.304054796\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 215040 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{3}^{*}$ | additive | 1 | 4 | 11 | 0 |
$3$ | $2$ | $I_{28}$ | nonsplit multiplicative | 1 | 1 | 28 | 28 |
$5$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$17$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.8 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 113 & 8 \\ 112 & 9 \end{array}\right),\left(\begin{array}{rr} 37 & 44 \\ 118 & 99 \end{array}\right),\left(\begin{array}{rr} 56 & 3 \\ 5 & 2 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 114 & 115 \end{array}\right),\left(\begin{array}{rr} 41 & 8 \\ 44 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 48 & 113 \\ 67 & 54 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$737280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 5 \) |
$3$ | nonsplit multiplicative | $4$ | \( 272 = 2^{4} \cdot 17 \) |
$5$ | nonsplit multiplicative | $6$ | \( 816 = 2^{4} \cdot 3 \cdot 17 \) |
$7$ | good | $2$ | \( 1360 = 2^{4} \cdot 5 \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 240 = 2^{4} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 4080d
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2040f3, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{10}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{5}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{5})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.21894529024000000.29 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.1296000000.2 | \(\Z/8\Z\) | not in database |
$8$ | 8.2.60602345828352.8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | nonsplit | ord | ss | ord | nonsplit | ord | ord | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.