Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+1201612x-689318094\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+1201612xz^2-689318094z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+1557289773x-32165496851346\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(481, -241)$ | $0$ | $2$ |
Integral points
\( \left(481, -241\right) \)
Invariants
Conductor: | $N$ | = | \( 407330 \) | = | $2 \cdot 5 \cdot 7 \cdot 11 \cdot 23^{2}$ |
|
Discriminant: | $\Delta$ | = | $-316366934661234688000$ | = | $-1 \cdot 2^{18} \cdot 5^{3} \cdot 7^{2} \cdot 11^{3} \cdot 23^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{1296134247276791}{2137096192000} \) | = | $2^{-18} \cdot 5^{-3} \cdot 7^{-2} \cdot 11^{-3} \cdot 13^{3} \cdot 8387^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6186920745975754538493532353$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0509449666330006084459768194$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9674595750802547$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.197899826725763$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.090510388648664200410202107546$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 72 $ = $ 2\cdot3\cdot2\cdot3\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.6291869956759556073836379358 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.629186996 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.090510 \cdot 1.000000 \cdot 72}{2^2} \\ & \approx 1.629186996\end{aligned}$$
Modular invariants
Modular form 407330.2.a.d
For more coefficients, see the Downloads section to the right.
Modular degree: | 20528640 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 4 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{18}$ | nonsplit multiplicative | 1 | 1 | 18 | 18 |
$5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$11$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$23$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 212520 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 62170 & 110883 \\ 199893 & 92392 \end{array}\right),\left(\begin{array}{rr} 60721 & 18492 \\ 161046 & 110953 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 212470 & 212511 \end{array}\right),\left(\begin{array}{rr} 212509 & 12 \\ 212508 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 106261 & 18492 \\ 9246 & 110953 \end{array}\right),\left(\begin{array}{rr} 70841 & 18492 \\ 177100 & 1 \end{array}\right),\left(\begin{array}{rr} 147839 & 0 \\ 0 & 212519 \end{array}\right),\left(\begin{array}{rr} 13479 & 48898 \\ 200606 & 14261 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 120130 & 110883 \\ 149661 & 92392 \end{array}\right)$.
The torsion field $K:=\Q(E[212520])$ is a degree-$2620905461121024000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/212520\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 29095 = 5 \cdot 11 \cdot 23^{2} \) |
$3$ | good | $2$ | \( 3703 = 7 \cdot 23^{2} \) |
$5$ | split multiplicative | $6$ | \( 81466 = 2 \cdot 7 \cdot 11 \cdot 23^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 58190 = 2 \cdot 5 \cdot 11 \cdot 23^{2} \) |
$11$ | split multiplicative | $12$ | \( 37030 = 2 \cdot 5 \cdot 7 \cdot 23^{2} \) |
$23$ | additive | $266$ | \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 407330d
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 770b3, its twist by $-23$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.