Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-1769544x-897916428\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-1769544xz^2-897916428z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-143333091x-654151076766\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-708, 726)$ | $2.3484298689151565460320892270$ | $\infty$ |
| $(2196, 76230)$ | $3.8042350482138928173517299307$ | $\infty$ |
| $(-829, 0)$ | $0$ | $2$ |
Integral points
\( \left(-829, 0\right) \), \((-813,\pm 2004)\), \((-708,\pm 726)\), \((1572,\pm 14406)\), \((2196,\pm 76230)\), \((35271,\pm 6619410)\)
Invariants
| Conductor: | $N$ | = | \( 40656 \) | = | $2^{4} \cdot 3 \cdot 7 \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $6776655270487990272$ | = | $2^{13} \cdot 3^{4} \cdot 7^{8} \cdot 11^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{84448510979617}{933897762} \) | = | $2^{-1} \cdot 3^{-4} \cdot 7^{-8} \cdot 73^{3} \cdot 601^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4277696006568237449982910256$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.53567478369769316355008711516$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0530860389430399$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.160916632429183$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $8.8148419528440308586576537432$ |
|
| Real period: | $\Omega$ | ≈ | $0.13098585448990450501042227720$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $9.2369568430938711558142806043 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.236956843 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.130986 \cdot 8.814842 \cdot 32}{2^2} \\ & \approx 9.236956843\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 983040 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{5}^{*}$ | additive | -1 | 4 | 13 | 1 |
| $3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $7$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
| $11$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.48.0.217 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1232 = 2^{4} \cdot 7 \cdot 11 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 353 & 352 \\ 1144 & 353 \end{array}\right),\left(\begin{array}{rr} 505 & 880 \\ 242 & 791 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 1228 & 1229 \end{array}\right),\left(\begin{array}{rr} 559 & 0 \\ 0 & 1231 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 1217 & 16 \\ 1216 & 17 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 1134 & 1219 \end{array}\right),\left(\begin{array}{rr} 540 & 649 \\ 1067 & 1178 \end{array}\right)$.
The torsion field $K:=\Q(E[1232])$ is a degree-$3406233600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1232\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 121 = 11^{2} \) |
| $3$ | split multiplicative | $4$ | \( 13552 = 2^{4} \cdot 7 \cdot 11^{2} \) |
| $7$ | nonsplit multiplicative | $8$ | \( 5808 = 2^{4} \cdot 3 \cdot 11^{2} \) |
| $11$ | additive | $62$ | \( 336 = 2^{4} \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 40656co
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 42a5, its twist by $44$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-22}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-11}) \) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{-11})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.4.245635219456.5 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.245635219456.4 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.746427861172224.46 | \(\Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | ord | nonsplit | add | ord | ord | ord | ord | ord | ss | ord | ord | ord | ss |
| $\lambda$-invariant(s) | - | 5 | 2 | 4 | - | 4 | 2 | 2 | 2 | 2 | 2,2 | 2 | 2 | 2 | 2,2 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.