Properties

Label 40560cf
Number of curves $1$
Conductor $40560$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 40560cf1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 40560cf do not have complex multiplication.

Modular form 40560.2.a.cf

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - 2 q^{7} + q^{9} - 5 q^{11} - q^{15} - 2 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 40560cf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
40560.bn1 40560cf1 \([0, 1, 0, 639024, -81994860]\) \(41689615345255319/28343520000000\) \(-19620064788480000000\) \([]\) \(975744\) \(2.3906\) \(\Gamma_0(N)\)-optimal