Properties

Label 405600by
Number of curves $4$
Conductor $405600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("by1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 405600by have rank \(1\).

Complex multiplication

The elliptic curves in class 405600by do not have complex multiplication.

Modular form 405600.2.a.by

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} - 4 q^{11} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 405600by

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
405600.by3 405600by1 \([0, -1, 0, -6766955758, -214241224047488]\) \(7099759044484031233216/577161945398025\) \(2785850472504695652225000000\) \([2, 2]\) \(433520640\) \(4.3113\) \(\Gamma_0(N)\)-optimal*
405600.by2 405600by2 \([0, -1, 0, -7231072008, -183170497574988]\) \(1082883335268084577352/251301565117746585\) \(9703877249795402209578120000000\) \([2]\) \(867041280\) \(4.6579\) \(\Gamma_0(N)\)-optimal*
405600.by4 405600by3 \([0, -1, 0, -6304952008, -244750103682488]\) \(-717825640026599866952/254764560814329735\) \(-9837599000157232750924920000000\) \([2]\) \(867041280\) \(4.6579\)  
405600.by1 405600by4 \([0, -1, 0, -108269179633, -13712108457168863]\) \(454357982636417669333824/3003024375\) \(927681605150040000000000\) \([2]\) \(867041280\) \(4.6579\)  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 405600by1.