Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-140833x-7207537\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-140833xz^2-7207537z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-11407500x-5220072000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-6599/49, 1047948/343)$ | $9.1774720782646943762767633203$ | $\infty$ |
| $(-347, 0)$ | $0$ | $2$ |
Integral points
\( \left(-347, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 405600 \) | = | $2^{5} \cdot 3 \cdot 5^{2} \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $156620298432000000$ | = | $2^{12} \cdot 3 \cdot 5^{6} \cdot 13^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{1000000}{507} \) | = | $2^{6} \cdot 3^{-1} \cdot 5^{6} \cdot 13^{-2}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.9918793220489713719543392291$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.78846149345879249279001627975$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1545407663950151$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.653616660039065$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $9.1774720782646943762767633203$ |
|
| Real period: | $\Omega$ | ≈ | $0.26002478360361489945294206370$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot1\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $9.5454807647159802300264498569 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.545480765 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.260025 \cdot 9.177472 \cdot 16}{2^2} \\ & \approx 9.545480765\end{aligned}$$
Modular invariants
Modular form 405600.2.a.ej
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3096576 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{3}^{*}$ | additive | -1 | 5 | 12 | 0 |
| $3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $13$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 156 = 2^{2} \cdot 3 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 145 & 4 \\ 134 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 106 & 1 \\ 103 & 0 \end{array}\right),\left(\begin{array}{rr} 40 & 121 \\ 117 & 40 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 153 & 4 \\ 152 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[156])$ is a degree-$10063872$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/156\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 12675 = 3 \cdot 5^{2} \cdot 13^{2} \) |
| $3$ | split multiplicative | $4$ | \( 135200 = 2^{5} \cdot 5^{2} \cdot 13^{2} \) |
| $5$ | additive | $14$ | \( 16224 = 2^{5} \cdot 3 \cdot 13^{2} \) |
| $13$ | additive | $98$ | \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 405600.ej
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 1248.c1, its twist by $65$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.