Properties

Label 40560.cx
Number of curves $1$
Conductor $40560$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 40560.cx1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 40560.cx do not have complex multiplication.

Modular form 40560.2.a.cx

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + 2 q^{7} + q^{9} + 5 q^{11} + q^{15} - 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 40560.cx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
40560.cx1 40560cu1 \([0, 1, 0, 107995000, -180574687500]\) \(41689615345255319/28343520000000\) \(-94702305301618360320000000\) \([]\) \(12684672\) \(3.6731\) \(\Gamma_0(N)\)-optimal