Properties

Label 405042.dp2
Conductor $405042$
Discriminant $2.276\times 10^{22}$
j-invariant \( \frac{3423676911662954233}{483711578981136} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z \oplus \Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy=x^3-11335227x-12771634815\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz=x^3-11335227xz^2-12771634815z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-14690454219x-595829322566010\) Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([1, 0, 0, -11335227, -12771634815])
 
Copy content gp:E = ellinit([1, 0, 0, -11335227, -12771634815])
 
Copy content magma:E := EllipticCurve([1, 0, 0, -11335227, -12771634815]);
 
Copy content oscar:E = elliptic_curve([1, 0, 0, -11335227, -12771634815])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$(-2220, 39225)$$2.4042427690841237258866708403$$\infty$
$(-1338, 669)$$0$$2$
$(3830, -1915)$$0$$2$

Integral points

\( \left(-2220, 39225\right) \), \( \left(-2220, -37005\right) \), \( \left(-1338, 669\right) \), \( \left(3830, -1915\right) \), \( \left(24312, 3740439\right) \), \( \left(24312, -3764751\right) \) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: $N$  =  \( 405042 \) = $2 \cdot 3 \cdot 11 \cdot 17 \cdot 19^{2}$
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: $\Delta$  =  $22756637383068625500816$ = $2^{4} \cdot 3^{10} \cdot 11^{6} \cdot 17^{2} \cdot 19^{6} $
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: $j$  =  \( \frac{3423676911662954233}{483711578981136} \) = $2^{-4} \cdot 3^{-10} \cdot 7^{3} \cdot 11^{-6} \cdot 17^{-2} \cdot 139^{3} \cdot 1549^{3}$
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: $\mathrm{End}(E)$ = $\Z$
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$  =  \(\Z\)    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$
Faltings height: $h_{\mathrm{Faltings}}$ ≈ $3.0159118884439373952019408114$
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: $h_{\mathrm{stable}}$ ≈ $1.5436923988607171651974270955$
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
$abc$ quality: $Q$ ≈ $1.070078751332218$
Szpiro ratio: $\sigma_{m}$ ≈ $4.67356470884948$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$ = $ 1$
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: $r$ = $ 1$
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: $\mathrm{Reg}(E/\Q)$ ≈ $2.4042427690841237258866708403$
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: $\Omega$ ≈ $0.083053059086053708876322866804$
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $\prod_{p}c_p$ = $ 1920 $  = $ 2^{2}\cdot( 2 \cdot 5 )\cdot( 2 \cdot 3 )\cdot2\cdot2^{2} $
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: $\#E(\Q)_{\mathrm{tor}}$ = $4$
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: $ L'(E,1)$ ≈ $23.961566010955333330576203247 $
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Ш${}_{\mathrm{an}}$  ≈  $1$    (rounded)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

$$\begin{aligned} 23.961566011 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.083053 \cdot 2.404243 \cdot 1920}{4^2} \\ & \approx 23.961566011\end{aligned}$$

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([1, 0, 0, -11335227, -12771634815]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([1, 0, 0, -11335227, -12771634815]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 405042.2.a.dp

\( q + q^{2} + q^{3} + q^{4} + 2 q^{5} + q^{6} + 4 q^{7} + q^{8} + q^{9} + 2 q^{10} + q^{11} + q^{12} - 6 q^{13} + 4 q^{14} + 2 q^{15} + q^{16} - q^{17} + q^{18} + O(q^{20}) \) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 53084160
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: no
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $\mathrm{ord}_p(N)$ $\mathrm{ord}_p(\Delta)$ $\mathrm{ord}_p(\mathrm{den}(j))$
$2$ $4$ $I_{4}$ split multiplicative -1 1 4 4
$3$ $10$ $I_{10}$ split multiplicative -1 1 10 10
$11$ $6$ $I_{6}$ split multiplicative -1 1 6 6
$17$ $2$ $I_{2}$ nonsplit multiplicative 1 1 2 2
$19$ $4$ $I_0^{*}$ additive -1 2 6 0

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2Cs 2.6.0.1

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[27855, 40394, 24814, 2243], [21319, 38152, 40394, 33669], [11629, 38152, 21014, 33669], [1, 4, 0, 1], [20195, 0, 0, 42635], [42633, 4, 42632, 5], [1, 0, 4, 1], [14213, 40394, 0, 1]] GL(2,Integers(42636)).subgroup(gens)
 
Copy content magma:Gens := [[27855, 40394, 24814, 2243], [21319, 38152, 40394, 33669], [11629, 38152, 21014, 33669], [1, 4, 0, 1], [20195, 0, 0, 42635], [42633, 4, 42632, 5], [1, 0, 4, 1], [14213, 40394, 0, 1]]; sub<GL(2,Integers(42636))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 42636 = 2^{2} \cdot 3 \cdot 11 \cdot 17 \cdot 19 \), index $48$, genus $0$, and generators

$\left(\begin{array}{rr} 27855 & 40394 \\ 24814 & 2243 \end{array}\right),\left(\begin{array}{rr} 21319 & 38152 \\ 40394 & 33669 \end{array}\right),\left(\begin{array}{rr} 11629 & 38152 \\ 21014 & 33669 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 20195 & 0 \\ 0 & 42635 \end{array}\right),\left(\begin{array}{rr} 42633 & 4 \\ 42632 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 14213 & 40394 \\ 0 & 1 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[42636])$ is a degree-$12221799727104000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/42636\Z)$.

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ split multiplicative $4$ \( 361 = 19^{2} \)
$3$ split multiplicative $4$ \( 12274 = 2 \cdot 17 \cdot 19^{2} \)
$5$ good $2$ \( 135014 = 2 \cdot 11 \cdot 17 \cdot 19^{2} \)
$11$ split multiplicative $12$ \( 36822 = 2 \cdot 3 \cdot 17 \cdot 19^{2} \)
$17$ nonsplit multiplicative $18$ \( 23826 = 2 \cdot 3 \cdot 11 \cdot 19^{2} \)
$19$ additive $182$ \( 1122 = 2 \cdot 3 \cdot 11 \cdot 17 \)

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2.
Its isogeny class 405042.dp consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 1122.c2, its twist by $-19$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.