Properties

Label 404586.i1
Conductor $404586$
Discriminant $1.560\times 10^{18}$
j-invariant \( \frac{661397832743623417}{443352042} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy=x^3-x^2-27608463x-55828700901\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz=x^3-x^2z-27608463xz^2-55828700901z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-441735411x-3573478593074\) Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, -27608463, -55828700901])
 
gp: E = ellinit([1, -1, 0, -27608463, -55828700901])
 
magma: E := EllipticCurve([1, -1, 0, -27608463, -55828700901]);
 
oscar: E = EllipticCurve([1, -1, 0, -27608463, -55828700901])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroup(E);
 

Infinite order Mordell-Weil generator and height

$P$ =  \(\left(-3035, 1428\right)\) Copy content Toggle raw display
$\hat{h}(P)$ ≈  $5.2216925311795491589695449259$

sage: E.gens()
 
magma: Generators(E);
 
gp: E.gen
 

Torsion generators

\( \left(-\frac{12141}{4}, \frac{12141}{8}\right) \) Copy content Toggle raw display

comment: Torsion subgroup
 
sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 
oscar: torsion_structure(E)
 

Integral points

\( \left(-3035, 1607\right) \), \( \left(-3035, 1428\right) \), \( \left(134235, 49075632\right) \), \( \left(134235, -49209867\right) \) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: \( 404586 \)  =  $2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \cdot 19$
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: $1560042231714109962 $  =  $2 \cdot 3^{11} \cdot 7 \cdot 13^{6} \cdot 19^{4} $
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: \( \frac{661397832743623417}{443352042} \)  =  $2^{-1} \cdot 3^{-5} \cdot 7^{-1} \cdot 13^{3} \cdot 19^{-4} \cdot 67021^{3}$
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $2.8070825854320853246135258033\dots$
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: $0.97530176236726211088915946405\dots$
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
$abc$ quality: $1.0038346664696574\dots$
Szpiro ratio: $4.880827082100609\dots$

BSD invariants

Analytic rank: $1$
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Regulator: $5.2216925311795491589695449259\dots$
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: $0.065862621692976190039977904984\dots$
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $ 32 $  = $ 1\cdot2\cdot1\cdot2^{2}\cdot2^{2} $
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: $2$
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Analytic order of Ш: $1$ ( rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Special value: $ L'(E,1) $ ≈ $ 2.7513148782249434002007391837 $
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

BSD formula

$\displaystyle 2.751314878 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.065863 \cdot 5.221693 \cdot 32}{2^2} \approx 2.751314878$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 404586.2.a.i

\( q - q^{2} + q^{4} - 2 q^{5} - q^{7} - q^{8} + 2 q^{10} - 4 q^{11} + q^{14} + q^{16} + 2 q^{17} + q^{19} + O(q^{20}) \) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 23592960
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1
$3$ $2$ $I_{5}^{*}$ Additive -1 2 11 5
$7$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1
$13$ $4$ $I_0^{*}$ Additive 1 2 6 0
$19$ $4$ $I_{4}$ Split multiplicative -1 1 4 4

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 4.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[7, 6, 41490, 41491], [30848, 19149, 18083, 6382], [23544, 5993, 14755, 21126], [1, 0, 8, 1], [35111, 0, 0, 41495], [39313, 31928, 7228, 3225], [1, 8, 0, 1], [1, 4, 4, 17], [41489, 8, 41488, 9], [2003, 40300, 37154, 35517], [16420, 35113, 36959, 9582]]
 
GL(2,Integers(41496)).subgroup(gens)
 
Gens := [[7, 6, 41490, 41491], [30848, 19149, 18083, 6382], [23544, 5993, 14755, 21126], [1, 0, 8, 1], [35111, 0, 0, 41495], [39313, 31928, 7228, 3225], [1, 8, 0, 1], [1, 4, 4, 17], [41489, 8, 41488, 9], [2003, 40300, 37154, 35517], [16420, 35113, 36959, 9582]];
 
sub<GL(2,Integers(41496))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 41496 = 2^{3} \cdot 3 \cdot 7 \cdot 13 \cdot 19 \), index $48$, genus $0$, and generators

$\left(\begin{array}{rr} 7 & 6 \\ 41490 & 41491 \end{array}\right),\left(\begin{array}{rr} 30848 & 19149 \\ 18083 & 6382 \end{array}\right),\left(\begin{array}{rr} 23544 & 5993 \\ 14755 & 21126 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 35111 & 0 \\ 0 & 41495 \end{array}\right),\left(\begin{array}{rr} 39313 & 31928 \\ 7228 & 3225 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 41489 & 8 \\ 41488 & 9 \end{array}\right),\left(\begin{array}{rr} 2003 & 40300 \\ 37154 & 35517 \end{array}\right),\left(\begin{array}{rr} 16420 & 35113 \\ 36959 & 9582 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[41496])$ is a degree-$9991811456040960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/41496\Z)$.

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 404586.i consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 798.c1, its twist by $-39$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.