Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-108144x+13651152\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-108144xz^2+13651152z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-8759691x+9977968854\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(9992, 998316)$ | $8.1648556465026547905975792582$ | $\infty$ |
$(191, 0)$ | $0$ | $2$ |
Integral points
\( \left(191, 0\right) \), \((9992,\pm 998316)\)
Invariants
Conductor: | $N$ | = | \( 40344 \) | = | $2^{3} \cdot 3 \cdot 41^{2}$ |
|
Discriminant: | $\Delta$ | = | $14592320228352$ | = | $2^{10} \cdot 3 \cdot 41^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{28756228}{3} \) | = | $2^{2} \cdot 3^{-1} \cdot 193^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5580073375522692839829870704$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.87640134626650570913142138400$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0561716345991692$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.374012563668222$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $8.1648556465026547905975792582$ |
|
Real period: | $\Omega$ | ≈ | $0.67358232248332483000497492813$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.4997024291123468603761964956 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.499702429 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.673582 \cdot 8.164856 \cdot 4}{2^2} \\ & \approx 5.499702429\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 138240 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III^{*}$ | additive | -1 | 3 | 10 | 0 |
$3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$41$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.48.0.127 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1968 = 2^{4} \cdot 3 \cdot 41 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 944 & 533 \\ 1107 & 370 \end{array}\right),\left(\begin{array}{rr} 1354 & 451 \\ 287 & 1518 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 493 & 1312 \\ 492 & 985 \end{array}\right),\left(\begin{array}{rr} 1953 & 16 \\ 1952 & 17 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 1870 & 1955 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 1964 & 1965 \end{array}\right),\left(\begin{array}{rr} 527 & 0 \\ 0 & 1967 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1968])$ is a degree-$16927948800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1968\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 5043 = 3 \cdot 41^{2} \) |
$3$ | split multiplicative | $4$ | \( 13448 = 2^{3} \cdot 41^{2} \) |
$41$ | additive | $842$ | \( 24 = 2^{3} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 40344.c
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 24.a2, its twist by $41$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{41}) \) | \(\Z/4\Z\) | 2.2.41.1-576.1-f5 |
$2$ | \(\Q(\sqrt{123}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{41})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{6}, \sqrt{41})\) | \(\Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{41})\) | \(\Z/8\Z\) | not in database |
$8$ | 8.0.8437677133824.8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.135002834141184.19 | \(\Z/8\Z\) | not in database |
$8$ | 8.8.15000314904576.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | ord | ss | ord | ord | ord | ord | ord | ord | ord | ord | add | ord | ss |
$\lambda$-invariant(s) | - | 2 | 1 | 3,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | 1,1 |
$\mu$-invariant(s) | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.