Show commands: SageMath
Rank
The elliptic curves in class 40320s have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 40320s do not have complex multiplication.Modular form 40320.2.a.s
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 40320s
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
40320.i2 | 40320s1 | \([0, 0, 0, -318, -3652]\) | \(-19056256/19845\) | \(-3703553280\) | \([2]\) | \(16384\) | \(0.53132\) | \(\Gamma_0(N)\)-optimal |
40320.i1 | 40320s2 | \([0, 0, 0, -5988, -178288]\) | \(3976047968/1575\) | \(9405849600\) | \([2]\) | \(32768\) | \(0.87789\) |