Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-1497x+22286\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-1497xz^2+22286z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1497x+22286\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(169/4, 1485/8)$ | $3.7861115061662571080343282673$ | $\infty$ |
| $(22, 0)$ | $0$ | $2$ |
Integral points
\( \left(22, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 40320 \) | = | $2^{7} \cdot 3^{2} \cdot 5 \cdot 7$ |
|
| Discriminant: | $\Delta$ | = | $146966400$ | = | $2^{7} \cdot 3^{8} \cdot 5^{2} \cdot 7 $ |
|
| j-invariant: | $j$ | = | \( \frac{3976047968}{1575} \) | = | $2^{5} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{-1} \cdot 499^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.53131773815220173459009572910$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.42232426150848787493424562688$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8926893368151059$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.163461988501056$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.7861115061662571080343282673$ |
|
| Real period: | $\Omega$ | ≈ | $1.8007724529895377150276054387$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.8179253042509240607488899520 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.817925304 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.800772 \cdot 3.786112 \cdot 4}{2^2} \\ & \approx 6.817925304\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 16384 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II$ | additive | -1 | 7 | 7 | 0 |
| $3$ | $2$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 280 = 2^{3} \cdot 5 \cdot 7 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 277 & 4 \\ 276 & 5 \end{array}\right),\left(\begin{array}{rr} 202 & 1 \\ 39 & 0 \end{array}\right),\left(\begin{array}{rr} 57 & 4 \\ 114 & 9 \end{array}\right),\left(\begin{array}{rr} 36 & 249 \\ 177 & 114 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 139 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[280])$ is a degree-$123863040$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 63 = 3^{2} \cdot 7 \) |
| $3$ | additive | $8$ | \( 4480 = 2^{7} \cdot 5 \cdot 7 \) |
| $5$ | split multiplicative | $6$ | \( 8064 = 2^{7} \cdot 3^{2} \cdot 7 \) |
| $7$ | split multiplicative | $8$ | \( 5760 = 2^{7} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 40320.do
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 13440.l1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.0.806400.2 | \(\Z/4\Z\) | not in database |
| $8$ | 8.4.15987963749990400.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.509820272640000.343 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | split | split | ss | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | - | 2 | 2 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.