Properties

Label 402800p
Number of curves $1$
Conductor $402800$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 402800p1 has rank \(2\).

Complex multiplication

The elliptic curves in class 402800p do not have complex multiplication.

Modular form 402800.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} - 3 q^{9} + 2 q^{11} - q^{13} - 3 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 402800p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
402800.p1 402800p1 \([0, 0, 0, 3925, 332250]\) \(104487111/805600\) \(-51558400000000\) \([]\) \(645120\) \(1.3126\) \(\Gamma_0(N)\)-optimal