Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-130626316x-574410642129\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-130626316xz^2-574410642129z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-2090021051x-36764371117290\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-26789/4, 26785/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 402038 \) | = | $2 \cdot 7 \cdot 13 \cdot 47^{2}$ |
|
Discriminant: | $\Delta$ | = | $96511277523322298165984$ | = | $2^{5} \cdot 7^{3} \cdot 13^{8} \cdot 47^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{22868021811807457713}{8953460393696} \) | = | $2^{-5} \cdot 3^{3} \cdot 7^{-3} \cdot 13^{-8} \cdot 349^{3} \cdot 2711^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.3750805679879162673729172481$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4500067671328869739624419132$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.087583326356874$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.24454227479034$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.044658290049075008292521708647$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 160 $ = $ 5\cdot1\cdot2^{3}\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.7863316019630003317008683459 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.786331602 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.044658 \cdot 1.000000 \cdot 160}{2^2} \\ & \approx 1.786331602\end{aligned}$$
Modular invariants
Modular form 402038.2.a.w
For more coefficients, see the Downloads section to the right.
Modular degree: | 74188800 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
$7$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$13$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$47$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.9 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2632 = 2^{3} \cdot 7 \cdot 47 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 2304 & 2115 \\ 2209 & 894 \end{array}\right),\left(\begin{array}{rr} 2625 & 8 \\ 2624 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 236 & 1457 \\ 1175 & 2022 \end{array}\right),\left(\begin{array}{rr} 1928 & 1457 \\ 329 & 1552 \end{array}\right),\left(\begin{array}{rr} 559 & 0 \\ 0 & 2631 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 2626 & 2627 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[2632])$ is a degree-$307960676352$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2632\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 15463 = 7 \cdot 47^{2} \) |
$3$ | good | $2$ | \( 57434 = 2 \cdot 13 \cdot 47^{2} \) |
$5$ | good | $2$ | \( 201019 = 7 \cdot 13 \cdot 47^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 57434 = 2 \cdot 13 \cdot 47^{2} \) |
$13$ | split multiplicative | $14$ | \( 30926 = 2 \cdot 7 \cdot 47^{2} \) |
$47$ | additive | $1106$ | \( 182 = 2 \cdot 7 \cdot 13 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 402038w
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 182a4, its twist by $-47$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.