Properties

Label 40080.p
Number of curves $2$
Conductor $40080$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 40080.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
40080.p1 40080v1 \([0, -1, 0, -125, 0]\) \(13608288256/7828125\) \(125250000\) \([2]\) \(11232\) \(0.24342\) \(\Gamma_0(N)\)-optimal
40080.p2 40080v2 \([0, -1, 0, 500, -500]\) \(53892071984/31375125\) \(-8032032000\) \([2]\) \(22464\) \(0.58999\)  

Rank

sage: E.rank()
 

The elliptic curves in class 40080.p have rank \(0\).

Complex multiplication

The elliptic curves in class 40080.p do not have complex multiplication.

Modular form 40080.2.a.p

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} + 6 q^{11} - q^{15} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.