Properties

Label 400752.cw
Number of curves $2$
Conductor $400752$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cw1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 400752.cw have rank \(0\).

Complex multiplication

The elliptic curves in class 400752.cw do not have complex multiplication.

Modular form 400752.2.a.cw

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{7} - 2 q^{13} + 8 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 400752.cw

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
400752.cw1 400752cw2 \([0, 0, 0, -50800035, -139361910446]\) \(10963069081334500/1156923\) \(1529988093029772288\) \([2]\) \(20643840\) \(2.9176\) \(\Gamma_0(N)\)-optimal*
400752.cw2 400752cw1 \([0, 0, 0, -3167175, -2188800218]\) \(-10627137250000/110008287\) \(-36370477820175130368\) \([2]\) \(10321920\) \(2.5710\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 400752.cw1.