Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2-30105963x+84820077693\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z-30105963xz^2+84820077693z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-39017328723x+3957950804772078\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 400710 \) | = | $2 \cdot 3 \cdot 5 \cdot 19^{2} \cdot 37$ |
|
| Discriminant: | $\Delta$ | = | $-1362544603556858560512000$ | = | $-1 \cdot 2^{33} \cdot 3^{6} \cdot 5^{3} \cdot 19^{6} \cdot 37 $ |
|
| j-invariant: | $j$ | = | \( -\frac{64144540676215729729}{28962038218752000} \) | = | $-1 \cdot 2^{-33} \cdot 3^{-6} \cdot 5^{-3} \cdot 37^{-1} \cdot 79^{3} \cdot 50671^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.3376475574571233574262138150$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.8654280678739031274217000991$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0193685763415146$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.949311753124666$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.080011263021890778576618485374$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot1\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.2801802083502524572258957660 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 1.280180208 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.080011 \cdot 1.000000 \cdot 4}{1^2} \\ & \approx 1.280180208\end{aligned}$$
Modular invariants
Modular form 400710.2.a.d
For more coefficients, see the Downloads section to the right.
| Modular degree: | 56453760 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{33}$ | nonsplit multiplicative | 1 | 1 | 33 | 33 |
| $3$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $5$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $19$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $37$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 84360 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \cdot 37 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 42181 & 4446 \\ 2223 & 13339 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 50617 & 4446 \\ 27531 & 13339 \end{array}\right),\left(\begin{array}{rr} 84355 & 6 \\ 84354 & 7 \end{array}\right),\left(\begin{array}{rr} 71039 & 0 \\ 0 & 84359 \end{array}\right),\left(\begin{array}{rr} 66121 & 4446 \\ 74043 & 13339 \end{array}\right),\left(\begin{array}{rr} 24606 & 64201 \\ 38665 & 77331 \end{array}\right),\left(\begin{array}{rr} 63271 & 4446 \\ 65493 & 13339 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[84360])$ is a degree-$496218140363980800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/84360\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 66785 = 5 \cdot 19^{2} \cdot 37 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 13357 = 19^{2} \cdot 37 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 80142 = 2 \cdot 3 \cdot 19^{2} \cdot 37 \) |
| $11$ | good | $2$ | \( 200355 = 3 \cdot 5 \cdot 19^{2} \cdot 37 \) |
| $19$ | additive | $182$ | \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \) |
| $37$ | nonsplit multiplicative | $38$ | \( 10830 = 2 \cdot 3 \cdot 5 \cdot 19^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 400710.d
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 1110.n2, its twist by $-19$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.