Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2+3047x+31545\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z+3047xz^2+31545z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+48749x+2067630\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(40, 445)$ | $4.0871385281030578875819163786$ | $\infty$ |
| $(-10, 5)$ | $0$ | $2$ |
Integral points
\( \left(-10, 5\right) \), \( \left(40, 445\right) \), \( \left(40, -485\right) \)
Invariants
| Conductor: | $N$ | = | \( 400078 \) | = | $2 \cdot 7 \cdot 17 \cdot 41^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-2261049618716$ | = | $-1 \cdot 2^{2} \cdot 7 \cdot 17 \cdot 41^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{658503}{476} \) | = | $2^{-2} \cdot 3^{3} \cdot 7^{-1} \cdot 17^{-1} \cdot 29^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0589342863715734082093067031$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.79785174698058049372407498342$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8940633553705682$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.7659515791837634$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.0871385281030578875819163786$ |
|
| Real period: | $\Omega$ | ≈ | $0.52173666578229808257275889600$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot1\cdot1\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.2648200564857176646264084012 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.264820056 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.521737 \cdot 4.087139 \cdot 8}{2^2} \\ & \approx 4.264820056\end{aligned}$$
Modular invariants
Modular form 400078.2.a.e
For more coefficients, see the Downloads section to the right.
| Modular degree: | 552960 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $17$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $41$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 952 = 2^{3} \cdot 7 \cdot 17 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 121 & 834 \\ 832 & 119 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 949 & 4 \\ 948 & 5 \end{array}\right),\left(\begin{array}{rr} 618 & 1 \\ 167 & 0 \end{array}\right),\left(\begin{array}{rr} 818 & 1 \\ 543 & 0 \end{array}\right),\left(\begin{array}{rr} 477 & 4 \\ 2 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[952])$ is a degree-$20214448128$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/952\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 200039 = 7 \cdot 17 \cdot 41^{2} \) |
| $7$ | split multiplicative | $8$ | \( 57154 = 2 \cdot 17 \cdot 41^{2} \) |
| $17$ | split multiplicative | $18$ | \( 23534 = 2 \cdot 7 \cdot 41^{2} \) |
| $41$ | additive | $842$ | \( 238 = 2 \cdot 7 \cdot 17 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 400078.e
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 238.a2, its twist by $41$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.