Properties

Label 400.h
Number of curves $1$
Conductor $400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 400.h1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 3 T + 3 T^{2}\) 1.3.ad
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 400.h do not have complex multiplication.

Modular form 400.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{3} - 2 q^{7} + 6 q^{9} - q^{11} + 4 q^{13} + 5 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 400.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
400.h1 400g1 \([0, 0, 0, 125, 1250]\) \(270\) \(-800000000\) \([]\) \(240\) \(0.39120\) \(\Gamma_0(N)\)-optimal