Show commands: SageMath
                    
            
    Rank
The elliptic curves in class 39900s have rank \(0\).
L-function data
| Bad L-factors: | 
 | |||||||||||||||||||||
| Good L-factors: | 
 | |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 39900s do not have complex multiplication.Modular form 39900.2.a.s
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 39900s
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | 
|---|---|---|---|---|---|---|---|---|
| 39900.v2 | 39900s1 | \([0, 1, 0, 7867, 934488]\) | \(215355490304/1625176875\) | \(-406294218750000\) | \([2]\) | \(129024\) | \(1.4847\) | \(\Gamma_0(N)\)-optimal | 
| 39900.v1 | 39900s2 | \([0, 1, 0, -108508, 12571988]\) | \(35322627332176/3273046875\) | \(13092187500000000\) | \([2]\) | \(258048\) | \(1.8313\) | 
