Properties

Label 398544bb
Number of curves $1$
Conductor $398544$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 398544bb1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(19\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 398544bb do not have complex multiplication.

Modular form 398544.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{7} + q^{9} + q^{11} - 6 q^{13} - q^{15} - 5 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 398544bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
398544.bb1 398544bb1 \([0, -1, 0, -811566025, 8899249641109]\) \(-715604250883093504/11990907009\) \(-990545453316168917250816\) \([]\) \(119070720\) \(3.7350\) \(\Gamma_0(N)\)-optimal