Properties

Label 398544.i
Number of curves $6$
Conductor $398544$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 398544.i have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(19\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 398544.i do not have complex multiplication.

Modular form 398544.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{9} + 4 q^{11} + 2 q^{13} + 2 q^{15} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 8 & 8 & 4 \\ 2 & 1 & 2 & 4 & 4 & 2 \\ 4 & 2 & 1 & 2 & 2 & 4 \\ 8 & 4 & 2 & 1 & 4 & 8 \\ 8 & 4 & 2 & 4 & 1 & 8 \\ 4 & 2 & 4 & 8 & 8 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 398544.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
398544.i1 398544i6 \([0, -1, 0, -532194984, -4711934339280]\) \(86507645152456935217/284763401508447\) \(54873887131736547560681472\) \([2]\) \(143769600\) \(3.8041\)  
398544.i2 398544i4 \([0, -1, 0, -47964024, -2110329936]\) \(63327012793433857/36637441034769\) \(7060032270607397832658944\) \([2, 2]\) \(71884800\) \(3.4575\)  
398544.i3 398544i2 \([0, -1, 0, -32686504, 71710646704]\) \(20042301472793137/73645476129\) \(14191477990003812962304\) \([2, 2]\) \(35942400\) \(3.1109\)  
398544.i4 398544i1 \([0, -1, 0, -32657624, 71844049200]\) \(19989223566735457/271377\) \(52294328517169152\) \([2]\) \(17971200\) \(2.7644\) \(\Gamma_0(N)\)-optimal
398544.i5 398544i3 \([0, -1, 0, -17871064, 136993401520]\) \(-3275619238041697/40173535449153\) \(-7741437411697187179696128\) \([2]\) \(71884800\) \(3.4575\)  
398544.i6 398544i5 \([0, -1, 0, 191826616, -17073265872]\) \(4051060719646926383/2345012441401743\) \(-451883729967947261421907968\) \([2]\) \(143769600\) \(3.8041\)