Properties

Label 398544.be
Number of curves $1$
Conductor $398544$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("be1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 398544.be1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(19\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 398544.be do not have complex multiplication.

Modular form 398544.2.a.be

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + q^{9} - 6 q^{11} - 7 q^{13} - 2 q^{15} - q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 398544.be

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
398544.be1 398544be1 \([0, -1, 0, -13498632, 47489822448]\) \(-1411599396089233/4238100157152\) \(-816681597581124775575552\) \([]\) \(57024000\) \(3.2751\) \(\Gamma_0(N)\)-optimal