Properties

Label 397488hz
Number of curves $2$
Conductor $397488$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hz1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 397488hz have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 397488hz do not have complex multiplication.

Modular form 397488.2.a.hz

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} + 3 q^{11} - 3 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 397488hz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
397488.hz2 397488hz1 \([0, 1, 0, -11662408, -1579297420]\) \(2640625/1512\) \(100446197865697351729152\) \([]\) \(30191616\) \(3.1034\) \(\Gamma_0(N)\)-optimal
397488.hz1 397488hz2 \([0, 1, 0, -683417128, -6876854505676]\) \(531373116625/2058\) \(136718435983865839853568\) \([]\) \(90574848\) \(3.6527\)