Show commands: SageMath
Rank
The elliptic curves in class 397488hz have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 397488hz do not have complex multiplication.Modular form 397488.2.a.hz
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 397488hz
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
397488.hz2 | 397488hz1 | \([0, 1, 0, -11662408, -1579297420]\) | \(2640625/1512\) | \(100446197865697351729152\) | \([]\) | \(30191616\) | \(3.1034\) | \(\Gamma_0(N)\)-optimal |
397488.hz1 | 397488hz2 | \([0, 1, 0, -683417128, -6876854505676]\) | \(531373116625/2058\) | \(136718435983865839853568\) | \([]\) | \(90574848\) | \(3.6527\) |