Properties

Label 397488hp
Number of curves $2$
Conductor $397488$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 397488hp have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 397488hp do not have complex multiplication.

Modular form 397488.2.a.hp

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} - 3 q^{11} - 3 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 397488hp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
397488.hp2 397488hp1 \([0, 1, 0, -69008, -740076]\) \(2640625/1512\) \(20810062686486528\) \([]\) \(2322432\) \(1.8209\) \(\Gamma_0(N)\)-optimal
397488.hp1 397488hp2 \([0, 1, 0, -4043888, -3131355564]\) \(531373116625/2058\) \(28324807545495552\) \([]\) \(6967296\) \(2.3702\)