Properties

Label 397488.fk
Number of curves $2$
Conductor $397488$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 397488.fk have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 397488.fk do not have complex multiplication.

Modular form 397488.2.a.fk

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 4 q^{5} + q^{9} - 4 q^{15} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 397488.fk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
397488.fk1 397488fk1 \([0, 1, 0, -24963605, -48015742566]\) \(416013434950254592/771895089\) \(3192247514571150672\) \([2]\) \(26542080\) \(2.8066\) \(\Gamma_0(N)\)-optimal
397488.fk2 397488fk2 \([0, 1, 0, -24705620, -49056454056]\) \(-25203028990703632/1121144263281\) \(-74185625252697541809408\) \([2]\) \(53084160\) \(3.1532\)