Properties

Label 397488.bz
Number of curves $1$
Conductor $397488$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bz1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 397488.bz1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 397488.bz do not have complex multiplication.

Modular form 397488.2.a.bz

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} + q^{15} - 7 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 397488.bz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
397488.bz1 397488bz1 \([0, -1, 0, -1486, -12221]\) \(23296/9\) \(140292197136\) \([]\) \(338688\) \(0.83789\) \(\Gamma_0(N)\)-optimal