Show commands: SageMath
Rank
The elliptic curves in class 39710s have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 39710s do not have complex multiplication.Modular form 39710.2.a.s
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 39710s
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
39710.bc4 | 39710s1 | \([1, 1, 1, -569846, -165798557]\) | \(434985385981609/30179600\) | \(1419825870227600\) | \([2]\) | \(483840\) | \(1.9610\) | \(\Gamma_0(N)\)-optimal |
39710.bc3 | 39710s2 | \([1, 1, 1, -605946, -143647597]\) | \(523002686860009/113851032020\) | \(5356222104140109620\) | \([2]\) | \(967680\) | \(2.3075\) | |
39710.bc2 | 39710s3 | \([1, 1, 1, -1152861, 224780339]\) | \(3601910963276569/1618496000000\) | \(76143570214976000000\) | \([2]\) | \(1451520\) | \(2.5103\) | |
39710.bc1 | 39710s4 | \([1, 1, 1, -15592861, 23681116339]\) | \(8912089320684236569/5116268168000\) | \(240699343395816008000\) | \([2]\) | \(2903040\) | \(2.8568\) |