Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-1152861x+224780339\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-1152861xz^2+224780339z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1494107883x+10509763122918\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-819, 25318)$ | $3.0247776186723305802125999751$ | $\infty$ |
$(-1161, 580)$ | $0$ | $2$ |
Integral points
\( \left(-1161, 580\right) \), \( \left(-819, 25318\right) \), \( \left(-819, -24500\right) \)
Invariants
Conductor: | $N$ | = | \( 39710 \) | = | $2 \cdot 5 \cdot 11 \cdot 19^{2}$ |
|
Discriminant: | $\Delta$ | = | $76143570214976000000$ | = | $2^{12} \cdot 5^{6} \cdot 11^{3} \cdot 19^{7} $ |
|
j-invariant: | $j$ | = | \( \frac{3601910963276569}{1618496000000} \) | = | $2^{-12} \cdot 5^{-6} \cdot 11^{-3} \cdot 17^{3} \cdot 19^{-1} \cdot 71^{3} \cdot 127^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5102609364383485541153047091$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0380414468551283241107909932$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9465077228309521$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.051002446088738$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.0247776186723305802125999751$ |
|
Real period: | $\Omega$ | ≈ | $0.17376487115152764476738650348$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 96 $ = $ ( 2^{2} \cdot 3 )\cdot2\cdot1\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $12.614402236094931433020474447 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 12.614402236 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.173765 \cdot 3.024778 \cdot 96}{2^2} \\ & \approx 12.614402236\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1451520 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
$5$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$11$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$19$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 12540 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 19 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 3430 & 3 \\ 4533 & 12532 \end{array}\right),\left(\begin{array}{rr} 4181 & 12 \\ 4180 & 1 \end{array}\right),\left(\begin{array}{rr} 5235 & 1048 \\ 5198 & 1037 \end{array}\right),\left(\begin{array}{rr} 1310 & 12537 \\ 3987 & 8 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 12529 & 12 \\ 12528 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 12490 & 12531 \end{array}\right),\left(\begin{array}{rr} 5017 & 12 \\ 5022 & 73 \end{array}\right)$.
The torsion field $K:=\Q(E[12540])$ is a degree-$37444239360000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/12540\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 3971 = 11 \cdot 19^{2} \) |
$3$ | good | $2$ | \( 361 = 19^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 7942 = 2 \cdot 11 \cdot 19^{2} \) |
$11$ | nonsplit multiplicative | $12$ | \( 3610 = 2 \cdot 5 \cdot 19^{2} \) |
$19$ | additive | $200$ | \( 110 = 2 \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 39710.bc
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 2090.c2, its twist by $-19$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{209}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{57}) \) | \(\Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{33}, \sqrt{57})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$4$ | 4.0.5225.1 | \(\Z/4\Z\) | not in database |
$6$ | 6.0.22284891.1 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.1192518600625.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.798297575625.7 | \(\Z/12\Z\) | not in database |
$12$ | 12.0.4469547301936929.2 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.6.1006428465489777193987298767651660183608993000000000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ord | nonsplit | ord | nonsplit | ord | ss | add | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 2 | 1 | 3 | 1 | 1 | 1 | 1,1 | - | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.