Properties

Label 3971.a
Number of curves $2$
Conductor $3971$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 3971.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3971.a1 3971a1 \([0, -1, 1, -9867, -437910]\) \(-2258403328/480491\) \(-22605122407571\) \([]\) \(8640\) \(1.2838\) \(\Gamma_0(N)\)-optimal
3971.a2 3971a2 \([0, -1, 1, 69553, 2528427]\) \(790939860992/517504691\) \(-24346464109727771\) \([]\) \(25920\) \(1.8331\)  

Rank

sage: E.rank()
 

The elliptic curves in class 3971.a have rank \(1\).

Complex multiplication

The elliptic curves in class 3971.a do not have complex multiplication.

Modular form 3971.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{4} - 3 q^{5} - 4 q^{7} - 2 q^{9} + q^{11} + 2 q^{12} - 2 q^{13} + 3 q^{15} + 4 q^{16} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.