Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 3971.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3971.a1 | 3971a1 | \([0, -1, 1, -9867, -437910]\) | \(-2258403328/480491\) | \(-22605122407571\) | \([]\) | \(8640\) | \(1.2838\) | \(\Gamma_0(N)\)-optimal |
3971.a2 | 3971a2 | \([0, -1, 1, 69553, 2528427]\) | \(790939860992/517504691\) | \(-24346464109727771\) | \([]\) | \(25920\) | \(1.8331\) |
Rank
sage: E.rank()
The elliptic curves in class 3971.a have rank \(1\).
Complex multiplication
The elliptic curves in class 3971.a do not have complex multiplication.Modular form 3971.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.