Properties

Label 39600.ec
Number of curves $4$
Conductor $39600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ec1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 39600.ec have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 39600.ec do not have complex multiplication.

Modular form 39600.2.a.ec

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} + q^{11} - 2 q^{13} + 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 2 & 6 \\ 3 & 1 & 6 & 2 \\ 2 & 6 & 1 & 3 \\ 6 & 2 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 39600.ec

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
39600.ec1 39600ce4 \([0, 0, 0, -529875, -37104750]\) \(13060888875/7086244\) \(8926626601728000000\) \([2]\) \(663552\) \(2.3272\)  
39600.ec2 39600ce2 \([0, 0, 0, -409875, -101000750]\) \(4406910829875/7744\) \(13381632000000\) \([2]\) \(221184\) \(1.7779\)  
39600.ec3 39600ce3 \([0, 0, 0, -313875, 67223250]\) \(2714704875/21296\) \(26826826752000000\) \([2]\) \(331776\) \(1.9807\)  
39600.ec4 39600ce1 \([0, 0, 0, -25875, -1544750]\) \(1108717875/45056\) \(77856768000000\) \([2]\) \(110592\) \(1.4314\) \(\Gamma_0(N)\)-optimal